Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 1 - Graphs - 1.1 The Distance and Midpoint Formulas - 1.1 Assess Your Understanding - Page 7: 54

Answer

${{P}_{1}}=\left( 3,-6 \right)$

Work Step by Step

Let ${{P}_{1}}=({{x}_{1}},{{y}_{1}})$and${{P}_{2}}=(7,-2)$ Here, ${{P}_{1}}=({{x}_{1}},{{y}_{1}})$ and ${{P}_{2}}=({{x}_{2}},{{y}_{2}})=(7,-2)$ The midpoint formula: The coordinate of the mid-point of two points ${{P}_{1}}=({{x}_{1}},{{y}_{1}})$ and${{P}_{2}}=({{x}_{2}},{{y}_{2}})$ is $M=(x,y)$, where $x=\frac{{{x}_{1}}+{{x}_{2}}}{2},\,y=\frac{{{y}_{1}}+{{y}_{2}}}{2}$. Therefore, the coordinates of midpoint of the points ${{P}_{1}}=({{x}_{1}},{{y}_{1}})$ and ${{P}_{2}}=(7,-2)$ are $M=(x,y)$, where $x=\frac{{{x}_{1}}+7}{2},\,y=\frac{{{y}_{1}}-2}{2}$ The midpoint of the line segment joining the points ${{P}_{1}}$ and ${{P}_{2}}$ is $(5,-4)$. Therefore, $x=5$ and $y=-4$. $\Rightarrow 5=\frac{{{x}_{1}}+7}{2},\,\ and\,-4\,=\frac{{{y}_{1}}-2}{2}$ Solving each equation gives: $5=\frac{x_1+7}{2}\\ 10=x_1+7\\ x_1=3$ and $4\,=\frac{y_1-2}{2}\\ -8=y_1-2\\ y_1=-6$ Thus, ${{P}_{1}}=\left( 3,-6 \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.