Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 1 - Graphs - 1.1 The Distance and Midpoint Formulas - 1.1 Assess Your Understanding - Page 8: 58

Answer

Proved below

Work Step by Step

Let, \[{{P}_{1}}=(0,0),\,{{P}_{2}}=(a,0),\,{{P}_{3}}=\left( \frac{a}{2},\frac{\sqrt{3}a}{2} \right)\] So, the sides of triangle are ${{P}_{1}}{{P}_{2}},\,{{P}_{2}}{{P}_{3}},\,{{P}_{3}}{{P}_{1}}$ By the distance formula, the length of the side ${{P}_{1}}{{P}_{2}}$ is $d({{P}_{1}},{{P}_{2}})=\sqrt{{{(a-0)}^{2}}+{{(0-0)}^{2}}}$ $d({{P}_{1}},{{P}_{2}})=\sqrt{{{(a)}^{2}}}$ $d({{P}_{1}},{{P}_{2}})=\left| a \right|$ By the distance formula, the length of the side ${{P}_{2}}{{P}_{3}}$is $d({{P}_{2}},{{P}_{3}})=\sqrt{{{\left( \frac{a}{2}-a \right)}^{2}}+{{\left( \frac{\sqrt{3}a}{2}-0 \right)}^{2}}}$ $d({{P}_{2}},{{P}_{3}})=\sqrt{{{\left( -\frac{a}{2} \right)}^{2}}+{{\left( \frac{\sqrt{3}a}{2} \right)}^{2}}}$ $d({{P}_{2}},{{P}_{3}})=\sqrt{\frac{{{a}^{2}}}{4}+\frac{3{{a}^{2}}}{4}}$ $d({{P}_{2}},{{P}_{3}})=\sqrt{\frac{4{{a}^{2}}}{4}}$ \[d({{P}_{2}},{{P}_{3}})=\sqrt{{{a}^{2}}}\] \[d({{P}_{2}},{{P}_{3}})=\left| a \right|\] By the distance formula, the length of side ${{P}_{3}}{{P}_{1}}$ is $d({{P}_{3}},{{P}_{1}})=\sqrt{{{\left( 0-\frac{a}{2} \right)}^{2}}+{{\left( 0-\frac{\sqrt{3}a}{2} \right)}^{2}}}$ $d({{P}_{3}},{{P}_{1}})=\sqrt{\frac{{{a}^{2}}}{4}+\frac{3{{a}^{2}}}{4}}$ $d({{P}_{3}},{{P}_{1}})=\sqrt{\frac{4{{a}^{2}}}{4}}$ \[d({{P}_{3}},{{P}_{1}})=\sqrt{{{a}^{2}}}\] \[d({{P}_{3}},{{P}_{1}})=\left| a \right|\] Therefore, the sides of the triangle are the same Therefore, the points $(0,0),(a,0)$ and $\left( \frac{a}{2},\frac{\sqrt{3}a}{2} \right)$ are vertices of an equilateral triangle. By the midpoint formula, the coordinate $A=(x,y)$ of the midpoint of the line joining two points ${{P}_{1}}=(0,0)$ and${{P}_{2}}=(a,0)$ is $x=\frac{0+a}{2},\,y=\frac{0+0}{2}$ $x=\frac{a}{2},\,y=0$ $A$ is the midpoint of ${{P}_{1}}{{P}_{2}}$ Therefore, $A=\left( \frac{a}{2},0 \right)$ We find: $x=\frac{\frac{a}{2}+a}{2},\,y=\frac{\frac{\sqrt{3}a}{2}+0}{2}$ $x=\frac{3a}{4},\,y=\frac{\sqrt{3}\,a}{4}$ $B$is the midpoint of ${{P}_{2}}{{P}_{3}}$ $x=\frac{\frac{a}{2}+0}{2},\,y=\frac{\frac{\sqrt{3}\,a}{2}+0}{2}$ $x=\frac{a}{4},\,y=\frac{\sqrt{3}\,a}{4}$ $C$ is the midpoint of ${{P}_{2}}{{P}_{3}}$ Therefore, $C=\left( \frac{a}{4},\,\frac{\sqrt{3}\,a}{4} \right)$ Consider the triangle $ABC$, where$A=\left( \frac{a}{2},0 \right)$, $B=\left( \frac{3a}{4},\,\frac{\sqrt{3}\,a}{4} \right)$and $C=\left( \frac{a}{4},\,\frac{\sqrt{3}\,a}{4} \right)$ Let us find the length of side $AB,BC,AC$ By the distance formula, the length of the side $AB$ is $d(A,B)=\sqrt{{{\left( \frac{3a}{4}-\frac{a}{2} \right)}^{2}}+{{\left( \frac{\sqrt{3}a}{4}-0 \right)}^{2}}}$ $d(A,B)=\sqrt{{{\left( \frac{a}{4} \right)}^{2}}+{{\left( \frac{\sqrt{3}a}{4} \right)}^{2}}}$ $d(A,B)=\sqrt{\frac{{{a}^{2}}}{16}+\frac{3{{a}^{2}}}{16}}$ $d(A,B)=\sqrt{\frac{4{{a}^{2}}}{16}}$ $d(A,B)=\sqrt{\frac{{{a}^{2}}}{4}}$ $d(A,B)=\left| \frac{a}{2} \right|$ By the distance formula, the length of the side $BC$ is $d(B,C)=\sqrt{{{\left( \frac{3a}{4}-\frac{a}{4} \right)}^{2}}+{{\left( \frac{\sqrt{3}a}{4}-\frac{\sqrt{3}a}{4} \right)}^{2}}}$ $d(B,C)=\sqrt{{{\left( \frac{2a}{4} \right)}^{2}}+0}$ $d(B,C)=\sqrt{\frac{4{{a}^{2}}}{16}}$ $d(B,C)=\sqrt{\frac{{{a}^{2}}}{4}}$ $d(B,C)=\left| \frac{a}{2} \right|$ By the distance formula, the length of the side $AC$ is $d(A,C)=\sqrt{{{\left( \frac{a}{4}-\frac{a}{2} \right)}^{2}}+{{\left( \frac{\sqrt{3}a}{4}-0 \right)}^{2}}}$ $d(A,C)=\sqrt{{{\left( -\frac{a}{4} \right)}^{2}}+{{\left( \frac{\sqrt{3}a}{4} \right)}^{2}}}$ $d(A,C)=\sqrt{\frac{{{a}^{2}}}{16}+\frac{3{{a}^{2}}}{16}}$ $d(A,C)=\sqrt{\frac{4{{a}^{2}}}{16}}$ $d(A,C)=\sqrt{\frac{{{a}^{2}}}{4}}$ $d(A,C)=\left| \frac{a}{2} \right|$ Therefore, the length of sides $AB,BC,AC$ are the same Therefore, the triangle $ABC$ is an equilateral triangle
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.