Answer
a. $A(x) = \frac{1}{5} x + 20000$
b. $ 80,000 dollars$
c. $m = \frac{1}{5}$
Work Step by Step
a.
$A(x) = \frac{60,000 - 40,000}{200,000 - 100,000} x$ + b
solving for b at point $(200 000 , 60 000 )$
$y= \frac{60,000 - 40,000}{200,000 - 100,000} x$ + b
$60000= \frac{60,000 - 40,000}{200,000 - 100,000} (200000)$ + b
$20000 =$ b
$A(x) = \frac{60,000 - 40,000}{200,000 - 100,000} x$ + b
$A(x) = \frac{1}{5} x + 20000$
b.
$A(x) = \frac{1}{5} x + 20000$
$A(300000) = \frac{1}{5} (300000) + 20000$
$A(300000) = 80000$
$ 80,000 \ dollars$
c.
$(200 000 , 60 000)$ and $(100000, 40000)$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$m = \frac{60,000 - 40,000}{200,000 - 100,000}$
$m = \frac{1}{5}$