Answer
$b, d, e, g$
Work Step by Step
The center of the circle must be have a negative $x$ value and $y=0$.
a.
$(x-2)^2 + y^2 =3$
center $(2,0)$ : $\times$
b.
$(x+2)^2 + y^2 =3$
center $(-2,0)$ : $\checkmark$
c.
$x^2 + (y-2)^2 =3$
center $(0,2)$ : $\times$
d.
$(x+2)^2 + y^2 =4$
center $(-2,0)$ : $\checkmark$
e.
$x^2 + y^2 + 10x + 16 = 0$
$(x+5)^2 + y^2=9$
center $(-5,0)$ : $\checkmark$
f.
$x^2 + y^2 + 10x - 2y = 1$
$(x+5)^2 + (y-1)^2 = 27$
center $(-5,1)$ : $\times$
g.
$x^2 + y^2 + 9x + 10 = 0$
$(x+4.5)^2 + y^2 = 10.25$
center $(-4.5,0)$ : $\checkmark$
h.
$x^2 + y^2 - 9x - 10 = 0$
$(x-4.5)^2 + y^2 = 30.25$
center $(4.5,0)$ : $\times$