Answer
See graph, local maximum $f(1.77)=-1.91$, local minimum $f(-3.77)=-18.89$,
increasing on $(-3.77,1.77)$, decreasing on $(-6,-3.77),(1.77,4)$.
Work Step by Step
Step 1. See graph for $f(x)=-0.2x^3-0.6x^2+4x-6$,
Step 2. We can find a local maximum $f(1.77)=-1.91$, a local minimum $f(-3.77)=-18.89$,
Step 3. the function is increasing on $(-3.77,1.77)$, decreasing on $(-6,-3.77),(1.77,4)$.