Answer
a.) You can use an example to show that
$\frac{a^m}{a^n}$(when m>n) = $a^{m-n}$
b.) You can use an example to show that $(\frac{a}{b})^n$ = $\frac{a^n}{b^n}$
Work Step by Step
a.) You can use an example to show that
$\frac{a^m}{a^n}$(when m>n) = $a^{m-n}$
Example:
$\frac{2^4}{2^2}$ = $\frac{16}{4}$ = $2^{2}$
$\frac{2^4}{2^2}$ = $2^{4-2} = 2^{2}$
b.) You can use an example to show that $(\frac{a}{b})^n$ = $\frac{a^n}{b^n}$
Example:
$(\frac{2}{3})^3$ is the same thing as saying:
$(\frac{2}{3})$ * $(\frac{2}{3})$ * $(\frac{2}{3})$
This equals $\frac{8}{27}$
$\frac{2^3}{3^3}$ = $\frac{8}{27}$