Answer
(*)
$(a+b)^2 \ne a^2+b^2$
$(3+4)^2 \ne 3^2+4^2$
$49\ne25$
(*)
$\sqrt{a^2+b^2} \ne a+b$
$\sqrt{3^2+4^2} \ne 3+4$
$\sqrt{25} \ne 7$
$±5 \ne 7$
(*)
$\frac{a+b}{a} \ne b$
$\frac{4+5}{4} \ne 5$
$\frac{9}{4} \ne 5$
$2.24 \ne 5$
(*)
$\frac{a^m}{a^n} \ne a^\frac{m}{n}$
$\frac{3^4}{3^5} \ne 3^\frac{4}{5}$
$\frac{1}{3} \ne \sqrt[5] 3^4$
Work Step by Step
To prove this, we can simply put almost any number in place of variable (by saying "almost any" I mean except simple numbers like 0 and 1)