Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 1 - Section 1.5 - Equations - 1.5 Exercises - Page 59: 141

Answer

a) $x=4$ or $x=1$ b) $x=-2\pm\sqrt {13}$

Work Step by Step

(a) $x-\sqrt{x}-2=0$ Using Method I: Consider $u=\sqrt{x}, u^2=x $ $u^2-u-2=0$ $(u-2)(u+1)=0$ $\therefore u-2=0$ or $u+1=0$ $u=2$ or $u=-1$ Return to $x$: $\therefore x=4$ or $x=1$ Using Method II: Square the both sides $x-\sqrt{x}-2=0 \rightarrow x-2=\sqrt{x}$ $\therefore x^2-4x+4=x$ $\therefore x^2-5x+4=0$ $(x-4)(x-1)=0$ $x=4$ or $x=1$ (b) $\dfrac{12}{(x-3)^2}+\dfrac{10}{(x-3)}+1=0$ Using Method I: Get a common denominator $\dfrac{12}{(x-3)^2}+\dfrac{10(x-3)}{(x-3)^2}+\dfrac{(x-3)^2}{(x-3)^2}=0$ $\therefore 12+10(x-3)+(x-3)^2=0$ $\therefore 12+10x-30+x^2+9-6x=0$ $\therefore x^2+4x-9=0$ Use the Quadratic Rule: $x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}$ $\therefore x=\dfrac{-4\pm\sqrt{4^2-4(1)(-9)}}{2(1)}=\dfrac{-4\pm2\sqrt{13}}{2} =-2\pm\sqrt{13}$ Using Method II: Substitute by $u=x-3$ $\dfrac{12}{u^2}+\dfrac{10}{u}+1=0$ $\dfrac{12}{u^2}+\dfrac{10u}{u^2}+\dfrac{u^2}{u^2}=0$ $12+10u +u^2=0$ Use the Quadratic Rule: $x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}$ $u=\dfrac{-10\pm\sqrt{10^2-4(1)(12)}}{2(1)}$ $=\dfrac{-10\pm\sqrt{52}}{2}=\dfrac{-10\pm2\sqrt{13}}{2} =-5\pm\sqrt{13}$ Return to $x$: $\therefore x-3=-5\pm\sqrt{13}$ $\therefore x=-2\pm\sqrt{13}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.