An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 2 Probability - 2.2 Sample Spaces and the Algebra of Sets - Questions - Page 19: 11

Answer

The outcomes in the sample space are: \[S=\left\{ \begin{align} & ({{p}_{1}},{{i}_{1}}),\text{ }({{p}_{1}},{{i}_{2}}),\text{ }({{p}_{1}},{{i}_{3}}),\text{ }({{p}_{2}},{{i}_{1}}),\text{ }({{p}_{2}},{{i}_{2}}), \\ & ({{p}_{2}},{{i}_{3}}),\text{ }({{p}_{1}},{{p}_{2}}),\text{ }({{i}_{1}},{{i}_{2}}),\text{ }({{i}_{1}},{{i}_{3}}),\text{ }({{i}_{2}},{{i}_{3}}) \\ \end{align} \right\}\]

Work Step by Step

The outcomes of the event A are: \[A=\left\{ \begin{align} & ({{p}_{1}},{{i}_{1}}),\text{ }({{p}_{1}},{{i}_{2}}),\text{ }({{p}_{1}},{{i}_{3}}),\text{ }({{p}_{2}},{{i}_{1}}),\text{ }({{p}_{2}},{{i}_{2}}), \\ & ({{p}_{2}},{{i}_{3}}),\text{ }({{i}_{1}},{{i}_{2}}),\text{ }({{i}_{1}},{{i}_{3}}),\text{ }({{i}_{2}},{{i}_{3}}) \\ \end{align} \right\}\] Since the woman has her purse snatched by two teenagers and she suspects five persons. Out of five, 2 are perpetrators and 3 are innocent. Let us define two perpetrators by${{p}_{1}}$and${{p}_{2}}$ and three 3 innocent people by ${{i}_{1}}$, ${{i}_{2}}$ and ${{i}_{3}}$. We can choose 2 out of 5 suspects in ${}^{5}{{C}_{2}}=10$ ways. Therefore, the sample space S can be defined as: \[S=\left\{ \begin{align} & ({{p}_{1}},{{i}_{1}}),\text{ }({{p}_{1}},{{i}_{2}}),\text{ }({{p}_{1}},{{i}_{3}}),\text{ }({{p}_{2}},{{i}_{1}}),\text{ }({{p}_{2}},{{i}_{2}}), \\ & ({{p}_{2}},{{i}_{3}}),\text{ }({{p}_{1}},{{p}_{2}}),\text{ }({{i}_{1}},{{i}_{2}}),\text{ }({{i}_{1}},{{i}_{3}}),\text{ }({{i}_{2}},{{i}_{3}}) \\ \end{align} \right\}\] Let event A denote that she makes at least one incorrect identification. This means the event consists of at least one innocent. Hence, event A contains all outcomes in the sample space except $({{p}_{1,}}{{p}_{2}})$. The outcomes of event A are: \[A=\left\{ \begin{align} & ({{p}_{1}},{{i}_{1}}),\text{ }({{p}_{1}},{{i}_{2}}),\text{ }({{p}_{1}},{{i}_{3}}),\text{ }({{p}_{2}},{{i}_{1}}),\text{ }({{p}_{2}},{{i}_{2}}), \\ & ({{p}_{2}},{{i}_{3}}),\text{ }({{i}_{1}},{{i}_{2}}),\text{ }({{i}_{1}},{{i}_{3}}),\text{ }({{i}_{2}},{{i}_{3}}) \\ \end{align} \right\}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.