An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 2 Probability - 2.2 Sample Spaces and the Algebra of Sets - Questions - Page 25: 35

Answer

\[(A\cap B)\], \[({{A}^{C}}\cap B),\text{ }(A\cap {{B}^{C}}),\text{ and }(A{}^{C}\cup B{}^{C}){}^{C}\] is a subset of \[(A\cup B)\]. \[(A\cap B)\] and \[(A{}^{C}\cup B{}^{C}){}^{C}\]are subsets of A and also B. \[(A\cup B{}^{C})\] is a subset of A. \[(A{}^{C}\cup B)\]is a subset of B.

Work Step by Step

From a Venn Diagram: \[\begin{align} & A\subset (A\cup B) \\ & B\subset (A\cup B) \\ \end{align}\] \[\begin{align} & (A\cap B)\subset A \\ & (A\cap B)\subset B \\ & (A\cap B)\subset (A\cup B) \\ \end{align}\] \[\begin{align} & ({{A}^{C}}\cap B)\subset (A\cup B) \\ & ({{A}^{C}}\cap B)\subset B \\ \end{align}\] \[\begin{align} & (A\cap {{B}^{C}})\subset (A\cup B) \\ & (A\cap {{B}^{C}})\subset A \\ \end{align}\] \[\begin{align} & {{({{A}^{C}}\cap {{B}^{C}})}^{C}}\subset (A\cup B) \\ & {{({{A}^{C}}\cap {{B}^{C}})}^{C}}\subset A \\ & {{({{A}^{C}}\cap {{B}^{C}})}^{C}}\subset B \\ \end{align}\] Therefore, A, B, \[(A\cap B)\], \[({{A}^{C}}\cap B),\text{ }(A\cap {{B}^{C}}),\text{ and }(A{}^{C}\cup B{}^{C}){}^{C}\] is a subset of \[(A\cup B)\]. \[(A\cap B)\] and \[(A{}^{C}\cup B{}^{C}){}^{C}\]are subsets of A and also B. \[(A\cup B{}^{C})\] is a subset of A. \[(A{}^{C}\cup B)\]is a subset of B.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.