An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 2 Probability - 2.3 The Probability Function - Questions - Page 30: 2

Answer

0.7

Work Step by Step

Let A and B be any two events defined on S. Then, \[\begin{align} & P(A)=0.4 \\ & P(B)=0.5 \\ & P(A\cap B)=0.1 \\ \end{align}\] We have to find the probability that A or B but not both occur; that means we need to find\[P((A\cup B)\cap {{(A\cap B)}^{C}})\]as: \[\begin{align} & P((A\cup B)\cap {{(A\cap B)}^{C}})=P((A\cup {{B}^{C}})\cup (B\cap {{A}^{C}})\cup (A\cap {{A}^{C}})\cup (B\cap {{B}^{C}})) \\ & P((A\cup B)\cap {{(A\cap B)}^{C}})=P(A\cup {{B}^{C}})+(B\cap {{A}^{C}})+(A\cap {{A}^{C}})+(B\cap {{B}^{C}}) \\ & P((A\cup B)\cap {{(A\cap B)}^{C}})=[P(A)-P(A\cap B)]+[P(B)-P(A\cap B)]+0+0 \\ & P((A\cup B)\cap {{(A\cap B)}^{C}})=P(A)+P(B)-2P(A\cap B) \\ & P((A\cup B)\cap {{(A\cap B)}^{C}})=0.4+0.5-2(0.1) \\ & P((A\cup B)\cap {{(A\cap B)}^{C}})=0.7 \\ \end{align}\] Hence, the probability is 0.7.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.