Answer
\begin{array}{c}& \textbf{Salary} & \textbf{Frequency}
\\\hline & \text{70,000-87,916} & \text{1}
\\ & \text{87,917-105,833} & \text{3}
\\ & \text{105,834-123,750} & \text{7}
\\ & \text{123,751-141,667} & \text{6}
\\ & \text{141,668-159,584} & \text{5}
\\ & \text{159,585-177,501} & \text{3}
\end{array}
Work Step by Step
Find the highest and lowest values.
$H=177,500$
$L=70,000$
Find the range.
$R=H-L=177,500-70,000=107,500$
Find the class width by dividing the range my the number of classes.
$W=\frac{R}{C}=\frac{107,500}{6}=17,916 \overline 6$
Round up.
$W=17,917$
Add the width to the lowest value to get the lower limit of the next class. Find the upper limit of each class by subtracting 1 from the lower limit of the next class.
$70,000+17,917=87,917$
$87,917+17,917=105,834$
$105,834+17,917=123,751$
$123,751+17,917=141,668$
$141,668+17,917=159,585$
$159,585+17,917=177,502$
Tally the frequency for each category and enter the results in the table.