Answer
\begin{array}{c}& \textbf{Watts per Hour} & \textbf{Frequency}
\\\hline & \text{77-83} & \text{1}
\\ & \text{84-90} & \text{1}
\\ & \text{91-97} & \text{6}
\\ & \text{98-104} & \text{14}
\\ & \text{105-111} & \text{8}
\\ & \text{112-118} & \text{1}
\\ & \text{119-125} & \text{1}
\end{array}
Work Step by Step
Find the highest and lowest values.
$H=123$
$L=77$
Find the range.
$R=H-L=123-77=46$
Find the class width by dividing the range my the number of classes.
$W=\frac{R}{C}=\frac{46}{7}=6.57$
Round up to the nearest whole number.
$W=7$
Add the width to the lowest value to get the lower limit of the next class. Start with 0 since the lowest value is 0.8. ind the upper limit of each class by subtracting 1 from the lower limit of the next class.
$77+7=84$
$84+7=91$
$91+7=98$
$98+7=105$
$105+7=112$
$112+7=119$
$119+7=126$
Tally the frequency for each category and enter the results in the table.