Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 2 - Section 2.3 - Solving Right Triangles - 2.3 Problem Set - Page 82: 59

Answer

Chapter 2 - Section 2.3 Problem Set: 59 (Answer) Refer to Figure 1 The sum of the two angles $\angle DAF$ and $\angle CAE$ Is 3.0$^{\circ}$ + 2.2$^{\circ}$ = 5.2$^{\circ}$

Work Step by Step

Chapter 2 - Section 2.3 Problem Set: 59 (Solution) Refer to Figure 1 $EC$ = $DF$ = $6 ft.$ In $\triangle$DAB, $\tan \angle DAB$ = $\frac{DB}{AB}$ $\tan \angle DAB$ = $\frac{(6+54)}{54}$ $\angle DAB$ = $\tan^{-1}(\frac{60}{54})$ $\angle DAB$ = 48.0$^{\circ}$ (to the nearest tenths). In $\triangle$FAB, $\tan \angle FAB$ = $\frac{FB}{AB}$ $\tan \angle FAB$ = $\frac{(54)}{54}$ $\angle FAB$ = $\tan^{-1}(1)$ $\angle FAB$ = 45.0$^{\circ}$ (To the nearest tenths) $\angle DAF$ = $\angle DAB$ - $\angle FAB$ $\angle DAF$ = 48.0$^{\circ}$ - 45.0$^{\circ}$ $\angle DAF$ = 3.0$^{\circ}$ (To the nearest tenths) Similarly, In $\triangle$EAB, $\tan \angle EAB$ = $\frac{EB}{AB}$ $\tan \angle EAB$ = $\frac{(24+54)}{54}$ $\angle EAB$ = $\tan^{-1}(\frac{78}{54})$ $\angle EAB$ = 55.3$^{\circ}$ (To the nearest tenths) In $\triangle$CAB, $\tan \angle CAB$ = $\frac{CB}{AB}$ $\tan \angle CAB$ = $\frac{(12+6+54)}{54}$ $\angle CAB$ = $\tan^{-1}(\frac{72}{54})$ $\angle CAB$ = 53.1$^{\circ}$ (To the nearest tenths) $\angle CAE$ = $\angle EAB$ - $\angle CAB$ $\angle CAE$ = 55.3$^{\circ}$ - 53.1$^{\circ}$ $\angle CAE$ = 2.2$^{\circ}$ (To the nearest tenths) Therefore, the sum of the two angles $\angle DAF$ and $\angle CAE$ Is 3.0$^{\circ}$ + 2.2$^{\circ}$ = 5.2$^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.