Chemistry 10th Edition

Published by Brooks/Cole Publishing Co.
ISBN 10: 1133610668
ISBN 13: 978-1-13361-066-3

Chapter 3 - Chemical Equations and Reaction of Stoichiometry - Exercises - Limiting Reactant - Page 108: 36

Answer

The maximum amount of $Ca_3(PO_4)_2$ is equal to 18.0 g

Work Step by Step

- Calculate or find the molar mass for $ Ca(OH)_2 $: $ Ca(OH)_2 $ : ( 40.08 $\times$ 1 )+ ( 1.008 $\times$ 2 )+ ( 16.00 $\times$ 2 )= 74.10 g/mol - Using the molar mass as a conversion factor, find the amount in moles: $$ 12.9 \space g \times \frac{1 \space mole}{ 74.10 \space g} = 0.174 \space mole$$ - Calculate or find the molar mass for $ H_3PO_4 $: $ H_3PO_4 $ : ( 1.008 $\times$ 3 )+ ( 16.00 $\times$ 4 )+ ( 30.97 $\times$ 1 )= 97.99 g/mol - Using the molar mass as a conversion factor, find the amount in moles: $$ 18.37 \space g \times \frac{1 \space mole}{ 97.99 \space g} = 0.1875 \space mole$$ Find the amount of product if each reactant is completely consumed. $$ 0.174 \space mole \space Ca(OH)_2 \times \frac{ 1 \space mole \ Ca_3(PO_4)_2 }{ 3 \space moles \space Ca(OH)_2 } = 0.0580 \space mole \space Ca_3(PO_4)_2 $$ $$ 0.1875 \space mole \space H_3PO_4 \times \frac{ 1 \space mole \ Ca_3(PO_4)_2 }{ 2 \space moles \space H_3PO_4 } = 0.09375 \space mole \space Ca_3(PO_4)_2 $$ Since the reaction of $ Ca(OH)_2 $ produces less $ Ca_3(PO_4)_2 $ for these quantities, it is the limiting reactant. - Calculate or find the molar mass for $ Ca_3(PO_4)_2 $: $ Ca_3(PO_4)_2 $ : ( 40.08 $\times$ 3 )+ ( 16.00 $\times$ 8 )+ ( 30.97 $\times$ 2 )= 310.18 g/mol - Using the molar mass as a conversion factor, find the mass in g: $$ 0.0580 \space mole \times \frac{ 310.18 \space g}{1 \space mole} = 18.0 \space g$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.