Answer
\[\underline{\text{0}\text{.95}\ \text{mL}}\].
Work Step by Step
The weight of the infant is \[14\ \text{lb}\].Convert lb into kg as follows:
\[\left( 14\ \text{lb} \right)\left( \frac{1\ \text{kg}}{2.205\ \text{lb}} \right)=6.3\ kg\,\,\,\left[ \because \,1\text{kg}\,\text{=}\,2.205\ \text{lb}\,\, \right]\]
\[1\ \text{kg}\] dosage is \[15\ \text{mg}\]. So,
\[\begin{align}
& \text{6}\text{.3}\ kg=\left( \text{6}\text{.3}\ kg \right)\left( \frac{15\ \text{mg}}{1\ \text{kg}} \right) \\
& =95\ mg
\end{align}\]
For \[\text{80}\ \text{mg}\], the quantity of medicine to be given is \[0.80\ \text{mL}\].
For \[1\ \text{mg}\], the quantity would be \[\frac{0.80\ mL}{80\ mg}\].
So, for \[\text{95}\ \text{mg}\], the volume will be as follows:
\[\frac{\left( \text{95}\ \text{mg} \right)\left( \text{0}\text{.80}\ \text{mL} \right)}{\text{80}\ \text{mg}}=0.95\ mL\]
The volume of the suspension that can be given an infant is \[\underline{\text{0}\text{.95}\ \text{mL}}\].