Chemistry: The Central Science (13th Edition)

Published by Prentice Hall
ISBN 10: 0321910419
ISBN 13: 978-0-32191-041-7

Chapter 2 - Atoms, Molecules, and Ions - Exercises - Page 75: 2.20a

Answer

The radius of a rhodium atom in angstroms and in meters are equal to, respectively, $1.4 \times 10^{-10} \space m$ and $1.4 \space Å$

Work Step by Step

1. Identify the conversion factors: - Centimeters to meters: $\frac{1 \space m}{100 \space cm }$ - Meters to angstroms: $\frac{1 \space Å}{10^{-10} \space m}$ 2. Calculate the radius of that atom in angstroms and in meters: $r = \frac{d}{2}$ $r = \frac{2.7 \times 10^{-8} \space cm}{2} \times \frac{1 \space m}{100 \space cm } = 1.4 \times 10^{-10} \space m$ $r = \frac{2.7 \times 10^{-8} \space cm}{2} \times \frac{1 \space m}{100 \space cm } \times \frac{1 \space Å}{10^{-10} \space m} = 1.4 \space Å$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.