Physical Chemistry: Thermodynamics, Structure, and Change

Published by W. H. Freeman
ISBN 10: 1429290196
ISBN 13: 978-1-42929-019-7

Chapter 1 - Topic 1A - The perfect gas - Exercises - Page 55: 1A.13(b)

Answer

(i) 0.375 of $H_2$ and 0.625 of $N_2$ (ii) 1.5 bar $H_2$ and 2.5 bar $N_2$ (iii) 4.0 bar

Work Step by Step

1. Calculate the total amount of moles and determine each fraction: Total = 1.5 mol + 2.5 mol = 4.0 mol $$\frac{1.5 \space mol}{4.0 \space mol} = 0.375 (H_2)$$ $$\frac{2.5 \space mol}{4.0 \space mol} = 0.625 (N_2)$$ 2. Use PV = nRT to calculate their partial pressures: $H_2$: $$P = \frac{nRT}{V} = \frac{1.5 \space mol \times 8.31447×10^{−2} \space dm^3 \space bar \space K^{-1} \space mol^{-1} \times 273.15 \space K}{22.4 \space dm^3} = 1.5 \space bar$$ $N_2$: $$P = \frac{nRT}{V} = \frac{2.5 \space mol \times 8.31447×10^{−2} \space dm^3 \space bar \space K^{-1} \space mol^{-1} \times 273.15 \space K}{22.4 \space dm^3} = 2.5 \space bar$$ 3. Sum their partial pressures to get the total pressure. $$P = 1.5 \space bar + 2.5 \space bar = 4.0 \space bar$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.