College Physics (7th Edition)

Published by Pearson
ISBN 10: 0-32160-183-1
ISBN 13: 978-0-32160-183-4

Chapter 2 - Kinematics: Description of Motion - Learning Path Questions and Exercises - Exercises - Page 66: 86

Answer

(a) $19\,\mathrm{m/s}$ (b) $9.03\,\mathrm{m/s^2}$ (c) $2.1\,\mathrm{s}$ (d) $8.94\,\mathrm{m/s}$

Work Step by Step

(a) For the motion on the incline: $v_0=0$, $a=4.00\,\mathrm{m/s^2}$ and $\Delta x=45.0\,\mathrm{m}$ Using \begin{align*} v^2&=v_0^2+2a\Delta x\\ &=0+2(4.00)(45.0)\\ &=360\\ v&=\sqrt{360}\\ v&=19\,\mathrm{m/s} \end{align*} (b) For motion in the horizontal pool: $v_0=19\,\mathrm{m/s}$, $v=0$ and $\Delta x=20.0\,\mathrm{m}$. To compute the deceleration: \begin{align*} v^2&=v_0^2+2a\Delta x\\ 0&=19^2+2a(20.0)\\ a&={-361\over 40.0}\\ a&=-9.03\,\mathrm{m/s^2} \end{align*} Hence the deceleration in the pool is $9.03\,\mathrm{m/s^2}$ (c) To compute the time to stop, we have: $v=0$, $v_0=19\,\mathrm{m/s}$ and $a=-9.03\,\mathrm{m/s^2}$. Using the kinematic equation: \begin{align*} v&=v_0+at\\ 0&=19+(-9.03)t\\ t&={19\over 9.03}\\ t&=2.1\,\mathrm{s} \end{align*} It takes $2.1\,\mathrm{s}$ to stop. (d) The speed at the end of the first $10.0\,\mathrm{m}$: \begin{align*} v^2=v_0^2+2a\Delta x\\ &=0+2(4.00)(40.0)\\ &=80.0\\ v&=\sqrt{80.0}\\ v&=8.94\,\mathrm{m/s} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.