College Physics (7th Edition)

Published by Pearson
ISBN 10: 0-32160-183-1
ISBN 13: 978-0-32160-183-4

Chapter 2 - Kinematics: Description of Motion - Learning Path Questions and Exercises - Exercises - Page 66: 87

Answer

(a) $4060\,\mathrm{m}$ (b) $33.2\,\mathrm{s}$ (c) $862\,\mathrm{s}$

Work Step by Step

During the upward acceleration of the rocket, $v_0=0$, $a=30.0\,\mathrm{m/s^2}$ and $\Delta x=1000\,\mathrm{m}$ The speed reached by the rocket when the engines stop is \begin{align*} v^2&=v_0^2+2a\Delta x\\ &=0+2(30.0)(1000)\\ &=60000\\ v&=\sqrt{60000}\\ v&=245\,\mathrm{m/s} \end{align*} (a) Once the engines stop, the rocket continues to ascend but with a deceleration of $a=9.8\,\mathrm{m/s^2}$. For this part of the asend, $v_0=245\,\mathrm{m/s}$ and $v=0$. The vertical displacement during this phase is: \begin{align*} v^2&=v_0^2+2a\Delta x\\ 0&=(245)^2+2(-9.8)\Delta x\\ \Delta x&={60000\over 19.6}\\ &= 3060\,\mathrm{m} \end{align*} Maximum altitude reached is the sum of the altitudes climbed with the engines on and with the engines off. I.e., $1000+3060=4060\,\mathrm{m}$ (b) To compute the time taken during the ascend with engines on we have: $v_0=0$, $\Delta x=1000\,\mathrm{m}$ and $a=30.0\,\mathrm{m/s^2}$. Using the kinematic equation: \begin{align*} \Delta x&=v_0t+{1\over 2} at^2\\ 1000&=0+{1\over 2}(30.0)t_1^2\\ t_1^2&={1000\over 15.0}\\ t_1^2&=66.7\\ t_1&=\sqrt{66.7}\\ t_1&=8.2\,\mathrm{s} \end{align*} And for time taken to ascend while the engines are off: $v_0=245\,\mathrm{m/s}$, $v=0$ and $a=-9.8\,\mathrm{m/s^2}$. Then, \begin{align*} v&=v_0+at\\ 0&=245+(-9.8)t_2\\ t_2&={245\over 9.8}\\ t_2&=25\,\mathrm{s} \end{align*} Total time for the rocket to reach its maximum height is $t_1+t_2=8.2+25=33.2\,\mathrm{s}$. (c) During the initial free-fall, $v_0=0$, $a=9.8\,\mathrm{m/s^2}$ and $t=0.500\,\mathrm{s}$ We first calculate the distance through which the rocket falls in this time: \begin{align*} \Delta x &=v_0t+{1\over 2}at^2\\ &=0+{1\over 2}(9.8)(0.500)^2\\ &=1.23\,\mathrm{m} \end{align*} The distance that the rocket falls after the parachute is deployed is then $\Delta x=4060-1.23=4059\,\mathrm{m}$. Further the final speed during the initial free-fall will be the initial speed for the descend with the parachute and is: \begin{align*} v&=v_0+at\\ &=0+(9.8)(0.500)\\ &=4.9\,\mathrm{m/s} \end{align*} Hence for the final descend with the parachute we have, $\Delta x=4059\,\mathrm{m}$, $v=4.9\,\mathrm{m/s}$ and $a=0$. The time taken for this is: \begin{align*} t&={\Delta x\over v}\\ &={4059\over 4.9}\\ &=828.3\,\mathrm{s} \end{align*} The time for the total trip is then $t=828.3+0.500+33.2=862\,\mathrm{s}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.