System Dynamics 3rd Edition

Published by McGraw-Hill Education
ISBN 10: 0073398063
ISBN 13: 978-0-07339-806-8

Chapter 2 - Problems - Page 110: 2.11

Answer

(a) $$ X(s) =\frac{3}{2}\left(\frac{1}{s}-\frac{1}{s+4}\right) $$ $$ x(t) =\frac{3}{2}\left(1-e^{-4 t}\right) $$ (b) $$ X(s) =\frac{5}{3} \frac{1}{s}+\frac{31}{3} \frac{1}{s+3} $$ $$ x(t) =\frac{5}{3}+\frac{31}{3} e^{-3 t} $$ (c) $$ X(s)=-\frac{1}{3} \frac{1}{s+2}+\frac{13}{3} \frac{1}{s+5} $$ $$ x(t)=-\frac{1}{3} e^{-2 t}+\frac{13}{3} e^{-5 t} $$ (d) $$ X(s)=\frac{5 / 2}{s^{2}(s+4)}= \frac{5}{8} \frac{1}{s^{2}}-\frac{5}{32} \frac{1}{s}+\frac{5}{32} \frac{1}{s+4} $$ $$ x(t)=\frac{5}{8} t-\frac{5}{32}+\frac{5}{32} e^{-4 t} $$ (e) $$X(s)=\frac{2}{5} \frac{1}{s^{2}}+\frac{13}{25} \frac{1}{s}-\frac{13}{25} \frac{1}{s+5}$$ $$x(t)=\frac{2}{5} t+\frac{13}{25}-\frac{13}{25} e^{-5 t}$$ (f) $$X(s)=-\frac{31}{4} \frac{1}{(s+3)^{2}}+\frac{79}{16} \frac{1}{s+3}-\frac{79}{16} \frac{1}{s+7}$$ $$x(t)=-\frac{31}{4} t e^{-3 t}+\frac{79}{16} e^{-3 t}-\frac{79}{16} e^{-7 t}$$

Work Step by Step

(a) $$ X(s) =\frac{3}{2}\left(\frac{1}{s}-\frac{1}{s+4}\right) $$ $$ x(t) =\frac{3}{2}\left(1-e^{-4 t}\right) $$ (b) $$ X(s) =\frac{5}{3} \frac{1}{s}+\frac{31}{3} \frac{1}{s+3} $$ $$ x(t) =\frac{5}{3}+\frac{31}{3} e^{-3 t} $$ (c) $$ X(s)=-\frac{1}{3} \frac{1}{s+2}+\frac{13}{3} \frac{1}{s+5} $$ $$ x(t)=-\frac{1}{3} e^{-2 t}+\frac{13}{3} e^{-5 t} $$ (d) $$ X(s)=\frac{5 / 2}{s^{2}(s+4)}= \frac{5}{8} \frac{1}{s^{2}}-\frac{5}{32} \frac{1}{s}+\frac{5}{32} \frac{1}{s+4} $$ $$ x(t)=\frac{5}{8} t-\frac{5}{32}+\frac{5}{32} e^{-4 t} $$ (e) $$X(s)=\frac{2}{5} \frac{1}{s^{2}}+\frac{13}{25} \frac{1}{s}-\frac{13}{25} \frac{1}{s+5}$$ $$x(t)=\frac{2}{5} t+\frac{13}{25}-\frac{13}{25} e^{-5 t}$$ (f) $$X(s)=-\frac{31}{4} \frac{1}{(s+3)^{2}}+\frac{79}{16} \frac{1}{s+3}-\frac{79}{16} \frac{1}{s+7}$$ $$x(t)=-\frac{31}{4} t e^{-3 t}+\frac{79}{16} e^{-3 t}-\frac{79}{16} e^{-7 t}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.