System Dynamics 3rd Edition

Published by McGraw-Hill Education
ISBN 10: 0073398063
ISBN 13: 978-0-07339-806-8

Chapter 2 - Problems - Page 110: 2.13

Answer

(a) $$\dot{x}=7 t / 5$$ $$\int_{3}^{x} d x=\frac{7}{5} \int_{0}^{t} t d t$$ $$x(t)=\frac{7}{10} t^{2}+3$$ (b) $$\dot{x}=3 e^{-5 t} / 4$$ $$\int_{4}^{x} d x=\frac{3}{4} \int_{0}^{t} e^{-5 t} d t$$ $$x(t)=\frac{3}{20}\left(1-e^{-5 t}\right)+4$$ (c) $$\ddot{x}=4 t / 7$$ $$\dot{x}(t)-\dot{x}(0)=\frac{4}{7} \int_{0}^{t} t d t$$ $$\dot{x}(t)=\frac{4}{14} t^{2}+5$$ $$\int_{3}^{x} d x=\int_{0}^{t}\left(\frac{4}{14} t^{2}+5\right) d t$$ $$x(t)=\frac{4}{42} t^{3}+5 t+3$$ (d) $$ \ddot{x}= 8 e^{-4 t} / 3 $$ $$ \dot{x}(t)-\dot{x}(0)=\frac{8}{3} \int_{0}^{t} e^{-4 t} d t $$ $$ \dot{x}(t)=\frac{17}{3}-\frac{8}{12} e^{-4 t} $$ $$ \int_{3}^{x} d x=\int_{0}^{t}\left(\frac{17}{3}-\frac{8}{12} e^{-4 t}\right) d t $$ $$ x(t)=\frac{17}{3} t+\frac{1}{6} e^{-4 t}+\frac{17}{6} $$

Work Step by Step

(a) $$\dot{x}=7 t / 5$$ $$\int_{3}^{x} d x=\frac{7}{5} \int_{0}^{t} t d t$$ $$x(t)=\frac{7}{10} t^{2}+3$$ (b) $$\dot{x}=3 e^{-5 t} / 4$$ $$\int_{4}^{x} d x=\frac{3}{4} \int_{0}^{t} e^{-5 t} d t$$ $$x(t)=\frac{3}{20}\left(1-e^{-5 t}\right)+4$$ (c) $$\ddot{x}=4 t / 7$$ $$\dot{x}(t)-\dot{x}(0)=\frac{4}{7} \int_{0}^{t} t d t$$ $$\dot{x}(t)=\frac{4}{14} t^{2}+5$$ $$\int_{3}^{x} d x=\int_{0}^{t}\left(\frac{4}{14} t^{2}+5\right) d t$$ $$x(t)=\frac{4}{42} t^{3}+5 t+3$$ (d) $$ \ddot{x}= 8 e^{-4 t} / 3 $$ $$ \dot{x}(t)-\dot{x}(0)=\frac{8}{3} \int_{0}^{t} e^{-4 t} d t $$ $$ \dot{x}(t)=\frac{17}{3}-\frac{8}{12} e^{-4 t} $$ $$ \int_{3}^{x} d x=\int_{0}^{t}\left(\frac{17}{3}-\frac{8}{12} e^{-4 t}\right) d t $$ $$ x(t)=\frac{17}{3} t+\frac{1}{6} e^{-4 t}+\frac{17}{6} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.