Answer
When $x-c=0$, $x$ increases as $c$ increases.
When $cx=1$, $x$ decreases as $c$ increases.
When $cx=c$, $x$ stays the same as $c$ increases.
When $\frac{x}{c}=1$, $x$ increases as $c$ increases.
Work Step by Step
When $x-c=0$,
$x-c+c=c$ or $x=c$
$\implies$ $x$ increases as $c$ increases.
When $cx=1$, $\frac{cx}{c}=\frac{1}{c}$
Or $x=\frac{1}{c}$
$\implies$ $x$ decreases as $c$ increases.
When $cx=c$, $\frac{cx}{c}=\frac{c}{c}$ or $x=1$.
$\implies $ $x$ stays the same as $c$ increases.
When $\frac{x}{c}=1$, $\frac{x\cdot c}{c}=1\cdot c$
Or $x=c$.
$\implies$ $x$ increases as $c$ increases.