College Algebra (11th Edition)

Published by Pearson
ISBN 10: 0321671791
ISBN 13: 978-0-32167-179-0

Chapter R - Review Exercises - Page 75: 63

Answer

$3(z-4)^2 \left( 3z-11 \right)$

Work Step by Step

Factoring the $GCF= 3(z-4)^2 ,$ then the given expression, $ 3(z-4)^2+9(z-4)^3 ,$ is equivalent to \begin{array}{l}\require{cancel} 3(z-4)^2 \left( \dfrac{3(z-4)^2}{3(z-4)^2}+\dfrac{9(z-4)^3}{3(z-4)^2} \right) \\\\= 3(z-4)^2 \left( \dfrac{\cancel{3(z-4)^2}}{\cancel{3(z-4)^2}}+\dfrac{\cancel{3}(3)(z-4)^\cancel{3}}{\cancel{3}(\cancel{z-4)^2}} \right) \\\\= 3(z-4)^2 \left( 1+3(z-4) \right) \\\\= 3(z-4)^2 \left( 1+3z-12 \right) \\\\= 3(z-4)^2 \left( 3z-11 \right) .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.