College Algebra (11th Edition)

Published by Pearson
ISBN 10: 0321671791
ISBN 13: 978-0-32167-179-0

Chapter R - Section R.7 - Radical Expressions - R.7 Exercises - Page 68: 73

Answer

$(3x-2x^{2})\sqrt[4]{x^2y^3}$

Work Step by Step

$\bf{\text{Solution Outline:}}$ To add/subtract the given expression, $ \sqrt[4]{81x^6y^3}-\sqrt[4]{16x^{10}y^3} ,$ simplify first each radical term by extracting the factor that is a perfect power of the index. Then, combine the like radicals. $\bf{\text{Solution Details:}}$ Extracting the factors of each radicand that is a perfect power of the index results to \begin{array}{l}\require{cancel} \sqrt[4]{81x^4\cdot x^2y^3}-\sqrt[4]{16x^{8}\cdot x^2y^3} \\\\= \sqrt[4]{(3x)^4\cdot x^2y^3}-\sqrt[4]{(2x^{2})^4\cdot x^2y^3} \\\\= 3x\sqrt[4]{x^2y^3}-2x^{2}\sqrt[4]{x^2y^3} .\end{array} Combining the like radicals results to \begin{array}{l}\require{cancel} (3x-2x^{2})\sqrt[4]{x^2y^3} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.