College Algebra (11th Edition)

Published by Pearson
ISBN 10: 0321671791
ISBN 13: 978-0-32167-179-0

Chapter R - Section R.7 - Radical Expressions - R.7 Exercises - Page 68: 97

Answer

$\dfrac{-2p+(p-2)\sqrt{p}+8}{p-2}$

Work Step by Step

Rationlize the denominator by multiplying $\sqrt{p}-2$ to both the numerator and the denominator to obtain: \begin{align*} \frac{p-4}{\sqrt p +2}&=\frac{(p-4)(\sqrt{p}-2)}{(\sqrt p +2)(\sqrt{p}-2)}\\ \\&=\frac{(p-4)(\sqrt p-2)}{(\sqrt p +2)(\sqrt p-2)}\\ \\&=\frac{p(\sqrt{p}-2)-4(\sqrt{p}-2)}{(\sqrt{p})^2-2^2} &\text{(Distribute, use the rule }(a-b)(a+b)=a^2-b^2.)\\ \\&=\frac{p\sqrt{p}-2p-4\sqrt{p}+8}{p-4}\\ \\&=\frac{(p\sqrt{p}-2\sqrt{p})-2p+8}{p-2}\\ \\&=\frac{-2p+(p-2)\sqrt{p}+8}{p-2} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.