Answer
$\frac{y}{16x^{8}z^{6}}$
Work Step by Step
$$(2x^{-3}yz^{-6})(2x)^{-5}$$
When a product is raised to an exponent, raise each factor to that exponent.
$$=(2x^{-3}yz^{-6})(2^{-5}x^{-5})$$
Combine like terms and simplify.
$$=(2\times2^{-5})(x^{-3}\times x^{-5})(y)(z^{-6})$$
$$=(2^{(1+(-5))})(x^{-3+(-5)})(y)(z^{-6})$$
$$=(2^{-4})(x^{-8})(y)(z^{-6})$$
When an exponent is negative, write the expression as a fraction and move the base from the numerator to the denominator (or vise versa) and make the exponent positive.
$$=\frac{y}{2^{4}x^{8}z^{6}}$$
$$=\frac{y}{16x^{8}z^{6}}$$