Answer
$ \frac{x+1}{x-5}$
Work Step by Step
$\frac{x^{2}+6x+5}{x^{2}-25}$
Factor the numerator and denominator
$=\frac{(x+5) (x+1)}{(x+5)(x-5)}$
The denominator is $ (x+5)(x-5) $ So,
$=\frac{(x+5)(x+1)}{(x+5)(x-5)} $ $x\ne -5$ and $ x\ne5 $
Divide out common factor (x+5)
$= \frac{x+1}{x-5}$