Answer
$\frac{-1}{\sqrt{x}\sqrt{x+h}(\sqrt{x}+\sqrt{x+h})}$
Work Step by Step
We simplify the fraction by multiplying through by $\sqrt{x}+\sqrt{x+h}$ and using the fact that $(a-b)(a+b)=a^2-b^2$:
$\displaystyle \frac{\sqrt{x}-\sqrt{x+h}}{h\sqrt{x}\sqrt{x+h}}=\frac{\sqrt{x}-\sqrt{x+h}}{h\sqrt{x}\sqrt{x+h}}*\displaystyle \frac{\sqrt{x}+\sqrt{x+h}}{\sqrt{x}+\sqrt{x+h}}=\frac{x-(x+h)}{h\sqrt{x}\sqrt{x+h}(\sqrt{x}+\sqrt{x+h})}
=\frac{-h}{h\sqrt{x}\sqrt{x+h}(\sqrt{x}+\sqrt{x+h})}=\frac{-1}{\sqrt{x}\sqrt{x+h}(\sqrt{x}+\sqrt{x+h})}$