Answer
See below
Work Step by Step
Given:
$y(t)=A\cos(\omega t-\phi)\\
y'(t)=-A\omega \sin(\omega t-\phi)\\
y''(t)=-A\omega^2 \cos(\omega t-\phi)$
Therefore,
$y+\omega^2 y=-A\omega^2 \cos(\omega t-\phi)+A\omega^2(\omega -\phi)=0$
Find $\phi$:
$-A\omega \sin(\omega(0)-\phi)=0\\
A\omega \sin (\phi)=0\\
\sin(\phi)=0\\
\phi=0$
and $a=A\cos(\omega(0)-(0))\\
a=A\cos(0)\\
a=A$