Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.1 Differential Equations Everywhere - Problems - Page 13: 31

Answer

See below

Work Step by Step

Given: $y(t)=c_1\cos(\omega t)+c_2\sin(\omega t)\\ y'(t)=-c_1\omega \sin(\omega t)+c_2\omega \cos(\omega t)\\ y''(t)=-c_1\omega^2 \cos(\omega t)-c_2\omega^2 \sin(\omega t)$ Therefore, $y''(t)+\omega^2 y(t)=-c_1\omega^2 \cos(\omega t)-c_2\omega^2 \sin(\omega t)+c_1\omega^2 \cos(\omega t)+c_2\omega^2 \sin(\omega t)=0$ Therefore $A\cos(\omega t-\phi)=c_1\cos(\omega t)+c_2(\omega t)\\ \Rightarrow A\cos (\omega t) \cos (\phi)+A\sin (\omega t)\sin (\phi)=c_1\cos (\omega t)+c_2\sin (\omega t)\\ \Rightarrow \frac{A\cos(\omega t)\cos(\phi)+A\sin(\omega t)\sin (\phi)}{\cos(\omega t)+\sin(\omega t)}=c_1+c_2\\ \Rightarrow A\cos(\phi)+A\sin(\phi)=c_1+c_2\\ \Rightarrow c_1=A\cos(\phi)\\ \Rightarrow c_2=A\sin(\phi)$ Find A: $c_1^2+c_2^2=A^2(\cos^2(\phi)+\sin^2(\phi))\\ \Rightarrow c_1^2+c_2^2=A^2\\ \Rightarrow A=\sqrt c_1^2+c_2^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.