Answer
See below
Work Step by Step
Given: $y'=\frac{y}{x^2}$
Rewrite as: $\frac{dy}{dx}=\frac{y}{x^2}\\\rightarrow \frac{dy}{y}=\frac{dx}{x^2}$
Integrate both sides:
$\int \frac{dy}{dx}=\int \frac{dx}{x^2}\\
\rightarrow \ln(y)=-\frac{1}{x}+c\\
\rightarrow y=e^{-\frac{1}{x}+c}$
where $c_1=-2\\c_2=-1\\c_3=1\\c_4=2$