Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.12 Chapter Review - Additional Problems - Page 109: 9

Answer

See below

Work Step by Step

Given: $y'=(y-3)(y+1)$ Rewrite as: $\frac{dy}{dx}=(y-3)(y+1)\\\rightarrow \frac{dy}{(y-3)(y+1)}=dx\\ $ Integrate both sides: $\int \frac{dy}{(y-3)(y+1)}=\int dx$ To solve this: $ \frac{1}{(y-3)(y+1)}=\frac{A}{y-3}+\frac{B}{y+1}=\frac{(A+B)y+(A-3B)}{(y-3)(y+1)}$ We have the system: $A+B=0\\A-3B=1$ then $A=-B\\ (-B)-3B=1\\ \rightarrow B=-\frac{1}{4}\\ \rightarrow A=\frac{1}{4}$ Hence, $\int \frac{dy}{(y-3)(y+1)}=\int\frac{dy}{4(y-3)}-\int\frac{dy}{4(y+1)}\\ =\frac{1}{4}\int\frac{dy}{y-3}-\frac{1}{4}\int \frac{dy}{y+1}\\ =\frac{1}{4}\ln(y-3)-\frac{1}{4}\ln (y+1)\\ =\frac{1}{4}(\ln(y-3)-\ln(y+1))\\ =\frac{1}{4}\ln(\frac{y-3}{y+1})$ Solve this, we get $\frac{1}{4}\ln(\frac{y-3}{y+1})=x+c$ where $c_1=0\\c_2=2\\c_3=4\\c_4=8$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.