Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.4 Separable Differential Equations - Problems - Page 44: 27

Answer

See below

Work Step by Step

a) Given: $T_m=75$ Apply Newton's Law of Cooling: $\frac{dT}{dt}=-k(T-T_m)\\ \rightarrow \frac{dT}{dt}=-k(T-75)\\ \rightarrow \frac{1}{T-75}\frac{dT}{dt}=-k$ Integrate: $\int \frac{1}{T-75}dT=\int -k.dt\\ \rightarrow \ln(T-75)=-kt+c_1$ Solve for $T$ For 10 minutes: $T=75+c_1e^{-kt}\\ \rightarrow 415=75+c_1e^{-10k}\\ \rightarrow c_1e^{-10k}=340$ For 20 minutes: $T=34+c_1e^{-kt}\\ \rightarrow 347=75+c_1e^{-20k}\\ \rightarrow c_1e^{-20k}=272$ Find $k$: $\frac{ c_1e^{-10k}}{ c_1e^{-20k}}=\frac{340}{272}\\ \rightarrow e^{10k}=1.25\\ \rightarrow k=0.022$ Obtain: $c_1e^{-10(0.022)}=340\\ 0.8c_1=340\\ c_1=425$ Hence, $T(0)=75+425e^{-(0.022)(0)})\\ \rightarrow T(0)=75+425\\ \rightarrow T(0)=500$ The temperature of the furnace is $500 \circ$C b) When the coal reaches 100: $100=75+425e^{-0.022t}\\ \rightarrow e^{-0.022t}=\frac{25}{425}\\ \rightarrow -0.022t=\ln(\frac{25}{425})\\ \rightarrow t\approx128.8$ minutes
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.