Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.4 Separable Differential Equations - Problems - Page 44: 28

Answer

See below

Work Step by Step

a) Given: $T_m=72$ Apply Newton's Law of Cooling: $\frac{dT}{dt}=-k(T-T_m)\\ \rightarrow \frac{dT}{dt}=-k(T-72)\\ \rightarrow \frac{1}{T-72}\frac{dT}{dt}=-k$ Integrate: $\int \frac{1}{T-72}dT=\int -k.dt\\ \rightarrow \ln(T-72)=-kt+c_1$ Solve for $T$ $T=72+c_1e^{-kt}\\ \rightarrow 150=72+c_1e^{-k}\\ \rightarrow c_1e^{-k}=78$ Find $k$: $-20=-k(150-72)\\ \rightarrow -78k=-20\\ \rightarrow k=0.256$ Find $c_1$: $78=c_1e^{(-0.256)(1)}\\ \rightarrow c_1=100.76$ Hence, $T(0)=72+100.76e^{-(0.256)(0)})\\ \rightarrow T(0)=72+100.76\\ \rightarrow T(0)=172.76$ The temperature after 10 minutes is: $T(0)=72+100.76e^{-(0.256)(10)})\\ \rightarrow T(0)=72+7.79\\ \rightarrow T(0)=79.79$ The rate of change after 10 minutes: $\frac{dT}{dt}=-0.256(79.79-72)\\ \frac{dT}{dt} \approx-2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.