Linear Algebra and Its Applications, 4th Edition

Published by Brooks Cole
ISBN 10: 0030105676
ISBN 13: 978-0-03010-567-8

Chapter 1 - Section 1.3 - An Example of Gaussian Elimination - Problem Set - Page 16: 11

Answer

Pivots are $ \begin{bmatrix} (2) && -3 && 0 && 3\\ 0 && (1) && 1 && 1\\ 0 && 0 && -5 && 0\\ \end{bmatrix}$ Solutions are $x=3,y=1,z=0$

Work Step by Step

$ 2x − 3y = 3\\ 4x − 5y + z = 7\\ 2x − y − 3z = 5\\ $ Converting them into matrix from, we get $\begin{bmatrix} 2 && -3 && 0 && 3\\ 4 && -5 && 1 && 7\\ 2 && -1 && -3 && 5\\ \end{bmatrix}$ Subtract 2 times row 1 from row 2 & Subtract 1 times row 1 from row 3 $\sim \begin{bmatrix} 2 && -3 && 0 && 3\\ 0 && 1 && 1 && 1\\ 0 && 2 && -3 && 2\\ \end{bmatrix}$ Subtract 2 times row 2 from row 3 $\sim \begin{bmatrix} (2) && -3 && 0 && 3\\ 0 && (1) && 1 && 1\\ 0 && 0 && -5 && 0\\ \end{bmatrix}$ Where the numbers in brackets are pivot. Now, back substituting, we get $-5z = 0, y+z=1,2x-3y=3$ Which on solving gives, $z=0,y=1,x=3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.