Linear Algebra and Its Applications, 4th Edition

Published by Brooks Cole
ISBN 10: 0030105676
ISBN 13: 978-0-03010-567-8

Chapter 1 - Section 1.3 - An Example of Gaussian Elimination - Problem Set - Page 16: 12

Answer

$d=10$ forces a row exchange and the triangular system after row exchange is $ \begin{bmatrix} 2 && 5 && 1 && 0\\ 0 && 1 && -1 && 3\\ 0 && 0 && -1 && 2\\ \end{bmatrix}$ For $d=11$, the system becomes singular.

Work Step by Step

$ 2x + 5y + z = 0\\ 4x + dy + z = 2\\ y − z = 3\\ $ Converting the above equation in matrix form $\begin{bmatrix} 2 && 5 && 1 && 0\\ 4 && d && 1 && 2\\ 0 && 1 && -1 && 3\\ \end{bmatrix}$ Subtract 2 times row 1 from row 2 $\sim \begin{bmatrix} 2 && 5 && 1 && 0\\ 0 && d-10 && -1 && 2\\ 0 && 1 && -1 && 3\\ \end{bmatrix}$ $d=10$ forces a row exchange. Hence the system after $d=10$ and after row exchange would be $\sim \begin{bmatrix} 2 && 5 && 1 && 0\\ 0 && 1 && -1 && 3\\ 0 && 0 && -1 && 2\\ \end{bmatrix}$ Now for $d\neq 10$ Subtract $\frac{1}{d-10}$ times row 2 from row 3 $\sim \begin{bmatrix} 2 && 5 && 1 && 0\\ 0 && d-10 && -1 && 2\\ 0 && 0 && \frac{d-11}{10-d} && \frac{3d-32}{d-10}\\ \end{bmatrix}$ For no third pivot $\frac{d-11}{10-d}=0$ Hence, $d=11$ The matrix finally changes to $\sim \begin{bmatrix} 2 && 5 && 1 && 0\\ 0 && 1 && -1 && 2\\ 0 && 0 && 0 && 1\\ \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.