Answer
Example solution:
\begin{bmatrix}
1& 2 &0&0\\
0& 1 & 0&1\\
0& 0 & 1&0\\
\end{bmatrix}
\begin{bmatrix}
1& 2 &0&0\\
0& 1 & 3&1\\
0& 0 & 1&0\\
\end{bmatrix}
\begin{bmatrix}
1& 2 &0&0\\
0& 1 & 3&1\\
4& 8 & 1&0\\
\end{bmatrix}
Work Step by Step
Construct an augmented matrix from the given solution set
\begin{bmatrix}
1& 0 &0&-2\\
0& 1 & 0&1\\
0& 0 & 1&0\\
\end{bmatrix}
To construct three different augmented matrices, perform different elementary row operations. Answers may differ.
Example solution:
R1=R1+2*R2
\begin{bmatrix}
1& 2 &0&0\\
0& 1 & 0&1\\
0& 0 & 1&0\\
\end{bmatrix}
R2=R2+3*R3
\begin{bmatrix}
1& 2 &0&0\\
0& 1 & 3&1\\
0& 0 & 1&0\\
\end{bmatrix}
R3=R3+4*R1
\begin{bmatrix}
1& 2 &0&0\\
0& 1 & 3&1\\
4& 8 & 1&0\\
\end{bmatrix}