Answer
See explanation
Work Step by Step
Make $4 \times 4$ matrix
\[
A=r \operatorname{and}(4,4)
\]
Identity matrix
Values are all zero
\[
\text { Diff }=1.0 \mathrm{e}-15 * \begin{array}{cccc}
0 & 0 & 0.4441 & 0.6661 \\
0 & 0.1110 & 0.4441 & -0.2220 \\
0 & 0 & -0.1110 & -0.1665 \\
-0.2220 & 0.1110 & -0.2220 & 0.1110
\end{array}
\]
9
Likely other random matrices can be taken and
proved
Here difference is not zero, it is false
\[
\text { Diff }=1.0 \mathrm{e}-15^{*} \mid \begin{array}{cccc}
-0.7867 & -0.4697 & -0.4655 & 0.0061 \\
0.0627 & 0.3188 & 0.1473 & 0.5655 \\
0.9474 & 0.2202 & 0.5184 & 0.8422 \\
-0.5945 & -0.1861 & -0.5971 & -0.0505
\end{array}
\]
Likely other random matrices can be taken and proved