Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 2 - Matrix Algebra - 2.1 Exercises - Page 104: 40

Answer

$\lim _{k \rightarrow \infty} A^{k}=\frac{1}{3}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$

Work Step by Step

Using MATLAB, find $A^{k}$, for $k=5,10,20,30$ : \[ \begin{aligned} A^{5}=\left[\begin{array}{ccc} 0.3318 & 0.3346 & 0.3336 \\ 0.3346 & 0.3323 & 0.3331 \\ 0.3336 & 0.3331 & 0.3333 \end{array}\right] \\ A^{10}=A^{20}=A^{30}=\left[\begin{array}{lll} 0.3333 & 0.3333 & 0.3333 \\ 0.3333 & 0.3333 & 0.3333 \\ 0.3333 & 0.3333 & 0.3333 \end{array}\right] \end{aligned} \] So,as power becomes bigger and bigger, the matrix becomes more and more like \[ \frac{1}{3}\left[\begin{array}{lll} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right] \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.