Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 0 - Before Calculus - 0.1 Functions - Exercises Set 0.1 - Page 13: 24

Answer

(a)$$x=9$$ (b) There exists no $x$ such that $1+ \sqrt{x}=0$. (c)$$x \ge 25$$ (d) $y=1+ \sqrt{x}$ has no maximum, and the minimum value for $y=1+ \sqrt{x}$ is $1$.

Work Step by Step

(a) Let us find the values of $x$ for which $1+ \sqrt{x}=4$; $$\Rightarrow \quad \sqrt{x}=3 \quad \Rightarrow \quad x=9.$$ (b) Let us find the values of $x$ for which $1+ \sqrt{x}=0$; $$\Rightarrow \quad \sqrt{x}=-1.$$ The above equation has no solution in the set of real numbers, so there exists no $x$ such that $1+ \sqrt{x}=0$. (c) Let us find the values of $x$ for which $1+ \sqrt{x} \ge 6$; $$\Rightarrow \quad \sqrt{x} \ge 5 \quad \Rightarrow \quad x \ge 25.$$ (d) $y=1+ \sqrt{x}$ has no maximum since for $x_1,x_2 \ge 1$, if $x_2 > x_1$ then $y_2=1+ \sqrt{x_2} > 1+ \sqrt{x_1}=y_1$. So for $x \ge 1$, $y=1+ \sqrt{x}$ is a strictly increasing function and there is no upper bound for it. The minimum value of $\sqrt{x}$ is $0$, so the minimum value for $y=1+ \sqrt{x}$ is $1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.