Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 0 - Before Calculus - 0.1 Functions - Exercises Set 0.1 - Page 14: 27

Answer

(a)$$f(x)=\begin{cases} 4x+1, & x \ge 0 \\ 2x+1, & x<0 \end{cases}$$ (b)$$g(x)=\begin{cases}2x-1, & x \ge 1 \\1, & 0 \le x <1 \\ -2x+1, & x<0 \end{cases}$$

Work Step by Step

(a) By definition of absolute value function we have$$|x|= \begin{cases} x, & x \ge 0 \\ -x, & x<0 \end{cases}$$ $$\Rightarrow \quad f(x)=|x|+3x+1= \begin{cases} 4x+1, & x \ge 0 \\ 2x+1, & x<0 \end{cases}.$$ (b) By definition of absolute value function we have$$|x|= \begin{cases} x, & x \ge 0 \\ -x, & x<0 \end{cases}, \quad |x-1|= \begin{cases}x-1, & x-1 \ge 0 \\ -(x-1), & x-1<0 \end{cases}= \begin{cases} x-1, & x \ge 1 \\ -x+1, & x<1 \end{cases}$$ $$\Rightarrow \quad g(x)=|x|+|x-1|= \begin{cases}x+(x-1), & x \ge 1 \\ x+(-x+1), & 0 \le x <1 \\ -x+(-x+1), & x<0 \end{cases}=\begin{cases}2x-1, & x \ge 1 \\1, & 0 \le x <1 \\ -2x+1, & x<0 \end{cases}.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.