Answer
$a. f(g(2))= 3$
$b. g(f(4))= 9$
$c. f(f(16))= 2$
$d. g(g(0))= 2$
$e. f(2+h)=\sqrt {(2+h)}$
$f. g(3+h)= (3+h)^{3}+1$
Work Step by Step
$a. f(g(2))
= f(2^{3}+1)
=\sqrt (2^{3}+1)
=\sqrt 9
=3$
$b. g(f(4))
=g(\sqrt 4)
=g(2)
=2^{3}+1
=9$
$c. f(f(16))
=f(\sqrt 16)
=f(4)
=\sqrt 4
=2$
$d. g(g(0))
=g(1)
=2$
$e. f(2+h)
=\sqrt {(2+h)}$
$f. g(3+h)
=(3+h)^{3}+1$