Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 0 - Before Calculus - 0.3 Families Of Function - Exercises Set 0.2 - Page 35: 6

Answer

$y=m(x+2)+\dfrac{1}{3}$

Work Step by Step

First, we determine the intersection point of the given lines: $\begin{cases} 5x-3y+11=0\\ 2x-9y+7=0 \end{cases}$ $\begin{cases} 5x+11=3y\\ 2x+7=9y \end{cases}$ $\begin{cases} y=\dfrac{5x+11}{3}\\ y=\dfrac{2x+7}{9} \end{cases}$ $\dfrac{5x+11}{3}=\dfrac{2x+7}{9}$ $3(5x+11)=2x+7$ $15x+33=2x+7$ $15x-2x=7-33$ $13x=-26$ $x=\frac{-26}{13}$ $x=-2$ $y=\dfrac{5(-2)+11}{3}$ $y=\dfrac{1}{3}$ The point is: $\left(-2,\dfrac{1}{3}\right)$ The equation of the lines passing through this point is: $y-\dfrac{1}{3}=m(x+2)$ $y=m(x+2)+\dfrac{1}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.