Answer
$\ f^{-1}(x)=\sqrt{\frac{5-x}{x}}\\$
Work Step by Step
$\ We\ are\ given\ that\ f(x)=\frac{5}{x^{2}+1}\\
\ Put\ y=\frac{5}{x^{2}+1}\\
\ Simplifying\ we\ get\ x^{2}+1=\frac{5}{y}\\
\ We\ get\ x^{2}=\frac{5}{y}-1\\
\ We\ get\ x^{2}=\frac{5-y}{y}\\
\ x=\sqrt{\frac{5-y}{y}}\\
\ Interchanging\ the\ values\ of\ x\ and\ y\ we\ get\ y=\sqrt{\frac{5-x}{x}}\\
\ Therefore\ f^{-1}(x)=\sqrt{\frac{5-x}{x}}\\$