Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 1 - Limits and Continuity - 1.2 Computing Limits - Exercises Set 1.2 - Page 70: 33

Answer

The statement is true

Work Step by Step

$$ \begin{array}{l}{\text { If } \lim _{x \rightarrow a} f(x) \text { and } \lim _{x \rightarrow a} g(x) \text { exist, then }} \end{array} $$ $$ \lim _{x \rightarrow a} f(x)=L_{1} , \lim _{x \rightarrow a} f(x)=L_{2} $$ where $L_{1} , L_{2}$ are constant by Theorem 1.2.2(a) we have $$ \lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)=L_{1}+L_{2} $$ Thus $$ \lim _{x \rightarrow a}[f(x)+g(x)]=L_{1}+L_{2}=L_{3} $$ then $$ \lim _{x \rightarrow a}[f(x)+g(x)] $$ Therefore the statement is true
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.