Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 1 - Limits and Continuity - 1.2 Computing Limits - Exercises Set 1.2 - Page 70: 43

Answer

For $a=2$ the limit exists and is finite.

Work Step by Step

Firstly, simplify the limit $\lim_\limits{x\to 1}\left(\dfrac{1}{x-1}-\dfrac{a}{x^2-1}\right)$ as follows: $\lim_\limits{x\to 1}\left(\dfrac{1}{x-1}-\dfrac{a}{x^2-1}\right)=\lim_\limits{x\to 1}\left(\dfrac{x+1-a}{x^2-1}\right)=\lim_\limits{x\to 1}\left(\dfrac{x+1-a}{(x-1)(x+1)}\right)$ Since, if $x \to1$, then $x-1$ approaches $0$. Which is in the denominator. So, the limit will exists only if $x-1$ is a factor of the numerator. That is, $x+1-a=x-1$ or $a=2$ Substitute $a=2$ in the limit and solve $\lim_\limits{x\to 1}\left(\dfrac{x+1-2}{(x-1)(x+1)}\right)=\lim_\limits{x\to 1}\left(\dfrac{x-1}{(x-1)(x+1)}\right)=\lim_\limits{x\to 1}\left(\dfrac{1}{x+1}\right)=\dfrac{1}{2}$ Hence, for $a=2$ the limit exists and is finite.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.