Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 1 - Limits and Continuity - 1.3 Limits At Infinity; End Behavior Of A Function - Exercises Set 1.3 - Page 78: 6

Answer

a) 20 b) 0 c) $+\infty$ d) $+\infty$ e) $\sqrt[3] -42$ or does not exist f) $-6/7$ g) 7 h) $-7/12$

Work Step by Step

As we have been given that $\lim\limits_{x \to -\infty}f(x)$ = 7 and $\lim\limits_{x \to -\infty}g(x)$ = -6 a) $\lim\limits_{x \to -\infty}[2f(x)-g(x)]$ = $2\lim\limits_{x \to -\infty}f(x) - \lim\limits_{x \to -\infty}g(x)$ By putting values = $2(7) - (-6)$ = 20 b) $\lim\limits_{x \to -\infty}[6f(x)+7g(x)]$ = $6\lim\limits_{x \to -\infty}f(x)$ + $7\lim\limits_{x \to -\infty}g(x)$ By putting values = $6(7) + 7(-6)$ = 0 c) $\lim\limits_{x \to -\infty}[x^{2} + g(x)]$ = $\lim\limits_{x \to -\infty}x^{2} + \lim\limits_{x \to -\infty}g(x)$ By putting values = $(-\infty)^{2}+(-6)$ = $+\infty$ d) $\lim\limits_{x \to -\infty}[x^{2}g(x)]$ = $(\lim\limits_{x \to -\infty}x^{2}) (\lim\limits_{x \to -\infty}g(x))$ By putting values = $[(-\infty)^{2}(-6)]$ = $+\infty$ e) $\lim\limits_{x\to -\infty}\sqrt[3] (f(x)g(x))$ = $\sqrt[3] (\lim\limits_{x \to -\infty}f(x))(\lim\limits_{x \to -\infty}g(x))$ By putting values =$\sqrt[3] (7)(-6)$ =$\sqrt[3] -42$ or does not exist f) $\lim\limits_{x \to -\infty}\frac{g(x)}{f(x)}$ = $\frac{\lim\limits_{x \to -\infty}g(x)}{\lim\limits_{x \to -\infty}f(x)}$ By putting values = $\frac{-6}{7}$ g) $\lim\limits_{x \to -\infty}[f(x) + \frac{g(x)}{x}]$ = $\lim\limits_{x \to -\infty}f(x) + \frac{\lim\limits_{x \to -\infty}g(x)}{\lim\limits_{x \to -\infty}x}$ By putting values = $7+ \frac{(-6)}{(-\infty)}$ = 7 + 0 = 7 h) $\lim\limits_{x \to -\infty}\frac{xf(x)}{(2x+3)g(x)}$ = $\frac{(\lim\limits_{x \to -\infty}x)(\lim\limits_{x \to -\infty}f(x))}{(2\lim\limits_{x \to -\infty}x+3)(\lim\limits_{x \to -\infty}g(x))}$ By putting values = $\frac{7}{(2+\frac{3}{-\infty})(-6)}$ = $\frac{7}{(2+0)(-6)}$ = $\frac{-7}{12}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.