Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 1 - Limits and Their Properties - 1.2 Exercises - Page 56: 31

Answer

Here, the given function, $f(x) = 2- \dfrac{1}{x}$, for $x \ne 0$. Consider the following $|f(x) - 1| = \Big|2 - \dfrac{1}{x} - 1\Big| = \Big|1 - \dfrac{1}{x} \Big| = \Big| \dfrac{x-1}{x} \Big| = \dfrac{|x-1|}{|x|}$ [Using property of modulus] Now, if $|f(x) - 1|< 0.1$ , then, $\dfrac{|x-1|}{|x|} < 0.1$ [ Inequality 1 ] As, $x \neq 0$ , we have $|x|> 0$, hence, $|x| = |(x- 1) + 1| \leq |x-1| + 1 $ [ Using the triangle inequality] $\Rightarrow \dfrac{1}{|x-1|+1} \leq \dfrac{1}{|x|}$ $\Rightarrow \dfrac{|x-1|}{|x-1|+1} \leq \dfrac{|x-1|}{|x|} < 0.1$ Thus, we get $\Rightarrow \dfrac{|x-1|}{|x-1|+1} < 0.1$ $\Rightarrow |x-1| < 0.1|x-1| + 0.1$ $\Rightarrow |x-1| - 0.1|x-1| < 0.1$ $\Rightarrow 0.9|x-1| < 0.1$ $\Rightarrow |x-1| < \dfrac{0.1}{0.9}$ Therefore, for $\delta = \dfrac{0.1}{0.9},$ we get $0$

Work Step by Step

Understanding how to find appropriate $\delta$ for a given $\epsilon$ is a very important aspect to start the pure mathematics. In practice for a given $\epsilon$ > 0, if we need $\delta$ such that $0 < |x-c|< \delta$ whenever $|f(x)-L|< \epsilon$. Then, we have to follow the given steps. $\textbf{Step I}$: Find the relation between $|f(x) -L|$ and $|x-c|$ using the properties of modulus, generally used ones are as follows. (a) $|x \cdot y| = |x|\cdot|y|$ (b) $\Big|\dfrac{x}{y}\Big| = \dfrac{|x|}{|y|}$, for $y \neq 0$ $\textbf{Step II}$: In the inequality $|f(x)-L|< \epsilon$, replace $|f(x) -L|$ using the relation obtained in step I. $\textbf{Step III}$: At last find the bound for $|x-c|$ using the inequality obtained in step II. This can be done using the properties of inequalities, generally used properties are as follows. (a) $|x + y| \leq |x| + |y|$ [ Triangle Inequality] (b) $||x| - |y|| \leq |x - y|$ (c) If $a< b$ , then, $\dfrac{1}{b} < \dfrac{1}{a}$ , where $a,b \neq 0$ (d) $|x|^{2} = |x^{2}|$ Check the numerical use in the answer to the problem.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.