Answer
$\lim_{x \to 0} \dfrac{\tan{(nx)}}{x} = n$
Work Step by Step
Using a graphing utility:
For $n=1$
$\lim_{x \to 0} \dfrac{\tan{x}}{x} = 1$
For $n=2$
$\lim_{x \to 0} \dfrac{\tan{2x}}{x} = 2$
For $n=5$
$\lim_{x \to 0} \dfrac{\tan{5x}}{x} = 5$
We notice that the value of the limit is always equal to $n$
$\lim_{x \to 0} \dfrac{\tan{(nx)}}{x} = n$